2023 6th International Symposium on Autonomous Systems (ISAS) | 979-8-3503-1615-5/23/$31.00 ©2023 IEEE | DOI: 10.1109/ISAS59543.2023.10164500

A Human-Machine Trust Model Integrating
Machine Estimated Performance

1% Shaojun Chen 2" Yun-Bo Zhao"
Department of Automation
University of Science
and Technology of China

Hefei, China

University of Science
and Technology of China

Science Center
Hefei, China
ybzhao @ustc.edu.cn

Abstract—The prediction of human trust in machines within
decision-aid systems is crucial for improving system performance.
However, previous studies have only measured machine per-
formance based on its decision history, failing to account for
the machine’s current decision state. This delay in evaluating
machine performance can result in biased trust predictions,
making it challenging to enhance the overall performance of
the human-machine system. To address this issue, this paper
proposes incorporating machine estimated performance scores
into a human-machine trust prediction model to improve trust
prediction accuracy and system performance. We also provide an
explanation for how this model can enhance system performance.

To estimate the accuracy of the machine’s current decision,
we employ the KNN(K-Nearest Neighbors) method and obtain a
corresponding performance score. Next, we report the estimated
score to humans through the human-machine interaction inter-
face and obtain human trust via trust self-reporting. Finally, we
fit the trust prediction model parameters using data and evaluate
the model’s efficacy through simulation on a public dataset.
Our ablation experiments show that the model reduces trust
prediction bias by 3.6% and significantly enhances the overall
accuracy of human-machine decision-making.

Index Terms—human machine trust, machine learning,
decision-aid systems, KNN

I. INTRODUCTION

Automated technology has found widespread and deep
application in both industrial and civilian domains [1], [2].
The implementation of automated technology is achieved
through machines, and with the application of Al technology
in machines, they have gained decision-making capabilities.
However, these decisions are uncertain and not entirely reli-
able. Thus, autonomous decision-making systems still require
human supervision and coordination to ensure optimal system
performance [3]. Human-machine decision-aid systems are a
prime example of such systems. The main workflow is shown
in Figure 1, where the machine presents decision results to
humans using machine learning methods, and humans make
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judgments and decide whether to adopt the machine’s decision
In human-machine collaborative decision-aid systems, trust

Environment machine Human-Al
Task decision interface
Human

« Human
Decision

Fig. 1. The workflow of human-machine decision-aid systems

in machine decision-making is critical for fostering effective
interaction and cooperation between humans and machines [4].
Over-reliance on machine decisions can result in catastrophic
consequences when the machine makes an error, while a lack
of trust in machine decision-making undermines the benefits
of automated decision-making, leading to reduced efficiency
of the human-machine system as a whole [4]-[6]. Hence,
guiding trust is of considerable research significance in human-
machine collaborative decision-aid systems [7], [8].

Guiding trust in human-machine collaborative decision-
making systems requires a predictable, reliable, and quan-
titative human-machine trust model [9]. A human-machine
trust model typically quantitatively describes the relationship
between human trust in the machine and the machine’s per-
formance. A differential equation trust model was proposed
in [10], which uses the machine’s accuracy or error rate,
including false positive and false negative rates, as a measure
of machine performance. The model also accounts for accumu-
lated trust, gender, and cultural factors to construct the human-
machine trust model. However, since the machine’s historical
decision accuracy remains constant or fluctuates slightly over
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time, this model fails to capture dynamic changes in machine
performance.

A trust model based on POMDP(Partially Observable
Markov Decision Process) was proposed in [11], which treats
trust as a hidden state variable, uses the machine’s previous
decision correctness as a measure of machine performance,
and considers transparency and other factors to construct the
trust model. This model can fully capture dynamic changes
in the machine’s historical decision accuracy. However, the
model only considers the correctness of the previous decision
and lacks a quantitative characterization of the relationship
between the current decision and the previous decision. Ad-
ditionally, the parameterized algorithm used in this model
is highly sensitive to initial values, leading to significant
fluctuations in trust prediction.

Overall, research on trust models in human-machine col-
laborative decision-making systems is insufficient, particularly
in the existing literature, where machine performance de-
scriptions are limited to historical machine decision-making,
such as accuracy and previous decision correctness, without
characterizing the current machine decision-making state. As
a result, human perception of machine performance is delayed,
leading to a bias that can significantly reduce the performance
of the human-machine system in some cases. Therefore, it is
necessary to incorporate the current machine decision-making
state into the trust model to reduce the bias in trust prediction
and improve the overall performance of the human-machine
system.

Inspired by a quantitative measurement method for clas-
sifier credibility in machine learning proposed in [12], we
utilized the machine’s decision history as a sample library
and compared the current decision result with the decision
history to obtain an estimated performance score of the ma-
chine’s current decision as a characterization of the machine’s
decision-making state. We improved the method proposed
in [12] and integrated this score into the human-machine
trust prediction model to predict human trust. Experimental
results demonstrate that our proposed trust model, which
incorporates machine estimated performance , can effectively
predict human trust compared to other trust models, while
also improving the overall performance of the human-machine
system.

1I. HUMAN MACHINE TRUST MODEL
A. Machine Estimated Performance Score

Decision-aid systems involve the selection of the most
appropriate option from a set of existing options using machine
learning techniques. As such, they can be viewed as a classifi-
cation problem in machine learning. To this end, we organize
the machine’s decision history as follows: firstly, for all de-
cision histories (x1,y1), (x2,¥2), .-, (Tn, Yn), Where z; € X
represents the sample and y; € Y represents the correct classi-
fication of the sample, we partition all samples based on their
classifications, defining the set H; := zi|l <i < mn,y; = for
each [ € Y. Then, for each [ € Y, we organize the elements
of H; into a KD tree 7;.

We calculate the estimated performance score of the ma-
chine’s current decision as follows: given the current task x
and the machine’s decision result y», we first place z into
all KD trees in the decision history. In each KD tree 7;, we
calculate the distance between X and the nearest element, d;.
In reference [12], the method for calculating the credibility of
machine decisions T} is as follows:

T, = min{dl,lde Y, #yn} 0
YN
where d,, denotes the distance between the current sample
and the nearest element in the KD tree corresponding to the
machine’s decision result y .

Under the calculation method in [12], regardless of the
machine’s decision result, this measurement method always
yields a positive number. When this number is greater than
1, it means that the probability of the machine’s decision
being correct is higher, and when it is less than 1, the
machine’s decision is more likely to be incorrect. However,
in a decision-aid system, it is crucial to pay more attention
to the possible errors made by the machine. Therefore, we
propose an improved method that considers the consequences
of both correct and incorrect machine decisions. Additionally,
when the machine makes an incorrect decision, we prefer the
estimated performance score to be negative, as this can better
incorporate the characterization of the machine’s decision-
making state into the trust model. Taking the above two points
into consideration, we have made some improvements to the
method proposed in [12]. First, we define the set Q as follows:

Q:={dld; < dyy,l €Y} 2)

The estimated performance score of machine decision is
defined as follows:

Yaeq —card(Q) - dyy,
T - dyN - dyN’

if card(Q) #0
if card(Q)=0

where card(Q) denotes the cardinal number of set Q

Remark: The underlying principle of the above method is
that the smaller the value of d,,, the closer the machine’s
current decision result is to the correct historical decision
results, and the better the estimated performance score. Other
categories’ nearest distances are also included to make the rel-
ative value more reasonable. When @ is empty, the calculation
method in this paper is not fundamentally different from that
in literature [12]. However, when @) is not empty, especially
when there are multiple elements in (), this indicates that
there are multiple classification results from historical decision
data that are better than the current decision result. The
method in literature [12] only uses one of them. The improved
method proposed in this paper utilizes all classification results
and strengthens the score of machine decision-making errors,
making human judgment more vigilant and improving the
overall performance of the human-machine system.

T = 3)
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B. Human Machine Trust Model Equation

Machine performance is the most crucial factor that affects
human-machine trust. Therefore, the trust prediction model
proposed in this paper characterizes the relationship between
trust and machine performance without considering cultural,
gender, or other influences. Jonker and Treur [13] suggested
that the change in trust is directly proportional to the difference
between experience and past trust. Here, historical experience
refers to the machine’s past decision performance, which has
been adequately addressed in relevant research literature [10],
[11]. Building on this, we integrate the machine’s current
estimated performance to formulate a new trust prediction
model, as follows:

S(n+1) = S(n) = ar(R(n) - S(n))
+az(T(n) — S(n)) )
+ a3C(n) + asD(n) + asS(n)

where S represents the trust value that humans have in
machine decision-making, ranging from 0 to 100. R represents
the accuracy of the machine’s historical decisions, while C'
and D indicate whether the machine’s decision at the previous
moment was correct(1)or incorrect(0). The subscript n refers
to the previous moment, and n + 1 to the next moment. The
remaining variables are coefficients that require estimation in
the model.

Remark:The proposed model, MEPTM (Machine Esti-
mated Performance Trust Model) considers the influence of
historical decision accuracy, which is in line with previous
literature. Moreover, we provide a more detailed classification
for the correctness of the machine’s decision at the previous
moment: generally, if the machine’s decision is correct, there
will be a slight increase in the human’s trust in the machine,
while an incorrect decision will result in a more significant
decrease in the trust value due to a greater negative response
to the machine’s wrong decision. Hence, we have developed
different coefficients to address this situation. Additionally, we
have accounted for the inertia of human decision-making by
introducing the variable D into the model.

When estimating performance, we measure the distance
between the machine’s decision and the correct decision, rather
than using division as a performance score, which is the
approach used in literature [12]. Our trust model justifies this
change. When the machine makes an incorrect decision, the
human’s trust in the machine should decrease. Using a ratio
to calculate the estimated performance score could result in
a positive score greater than the current trust value, which
is not reasonable, especially if the human’s initial trust value
is low. However, our proposed method results in a negative
estimated performance score that will decrease the trust value
when incorporated into the trust model, making this calculation
method more reasonable.

C. Parameterizing the trust model

Formula (4) involves five parameters that must be estimated
by fitting the data. A simple analysis suggests that these factors

can be treated as independent variables, indicating that this is
a linear model. To obtain the parameters of the trust model, we
first employ the trust self-reporting method to obtain the trust
values that humans have in machine decision-making for each
trial. Next, we use the data fitting command in the open-source
Python library scikit-learn (sklearn) to estimate the parameters
of the trust model.

III. EXPERIMENTAL VALIDATION

To validate the effectiveness of the trust model integrated
with machine performance estimation, we conducted real
experiments with volunteer participants. The experiments were
divided into two groups: one group received the machine’s
estimated performance score through the interface, while the
other group did not receive any performance score and served
as the control group. Each group was tested 70 times. The
entire experiment process is shown in Figure 2:

classification machine human-Al
——> - —>
task decision interface
feedback E trust { Respond:
correct/incorrect P human choice
questionaire

Fig. 2. Experiment process of MEPTM

The experiment was comprised of four main parts: First,
the machine made a decision for the current classification
task and reported the result to the human through a human-
machine interaction interface. Secondly, the human evaluated
the machine’s decision outcome and made a final choice. Then,
the human completed a trust questionnaire to report their level
of trust in the machine’s decision for that particular task.
Finally, the system provided feedback to the human on the
correct category of the current classification task.

A. Experiment settings

o The classification task is selected from the public dataset
“Digits” in scikit-learn, which is a classic dataset for
recognizing handwritten numbers and contains a total of
1797 images [14]

o We utilized the Naive Bayes algorithm to make decisions
on behalf of the machine. During the training phase, we
used the first 200 data samples from the dataset, which
led to the accuracy rate of the Naive Bayes algorithm
fluctuating between 65% and 85%

o At the same time, we also obtained the previous 200 sam-
ples and their correct classifications, which were put into
the algorithm for estimating the machine’s performance
to initialize the training of the performance estimation
algorithm.
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o In the experiment, we excluded the pre-trained 200
samples and randomly selected 70 samples from the
remaining dataset for testing.

o Prior to the experiment, volunteers were provided with in-
formation regarding the type of machine decision-making
algorithm, the accuracy of machine decision-making, the
significance of the machine’s performance estimation, and
the goal of the human-machine system to make correct
decisions in the shortest amount of time.

B. Results

In the experiment, we utilized the outcomes of the initial
50 trials as fitting data to parameterize the trust prediction
model, while the outcomes of the final 20 trials were utilized
to validate the model.

Firstly, we directly predicted the trust values. The results of
the experimental and control groups are shown in Figures 3
and 4, respectively. The trust prediction model for the control
group is as follows:

S(n+1) = S(n) = ar(R(n) — S(n)) 5)
+ a3C(n) + ayD(n) + as5S(n).

Compared to the MEPTM model, the control group’s model
lacks the machine performance prediction score.
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Fig. 3. Trust prediction of MEPTM

The results from Figure3 and Figure4 indicate that the pre-
diction deviation of MEPTM is more stable, fluctuating closely
around the true values, while the control group demonstrates a
smaller or larger difference from actual values in some cases.
The variance between actual and true values was calculated for
the 20 experimental verifications, yielding variances of 1.32
and 1.37 for the experimental and control groups, respectively.
This leads us to conclude that MEPTM is more robust in
predicting trust values.

Furthermore, we observed an interesting phenomenon where
the range of actual trust levels in the control group is smaller
than that in MEPTM, fluctuating around 60. This suggests
that in MEPTM, humans have more confidence in their own
decision-making. When the machine makes a wrong decision,
human trust values will significantly decrease, while a correct
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Fig. 4. Trust prediction of control group

decision by the machine will lead to a significant increase in
human trust values.

In a decision support system, human decision-making is the
ultimate decision of the human-machine system. It is worth
noting that the significance of human-machine trust lies in its
ability to impact human decision-making, which consequently
affects the accuracy of the decision support system. Addi-
tionally, during the practical use of human-machine support
systems, it is unattainable to complete a trust questionnaire
for every task, thereby hindering the acquisition of the actual
trust values.

Therefore, considering the practical use of decision support
systems and further highlighting the advantages of MEPTM
trust prediction, we obtain predicted trust values through the
trust model and use them to calculate human action selection.
We use the trust-action model proposed in [15] to accomplish
this, which is primarily a logistic regression model that maps
trust values and accuracy information to the probability of
discrete actions. An action is taken when the probability
is greater than 0.5, and another action is taken when the
probability is less than 0.5. In this paper, we represent humans
accepting machine decisions with 1 and rejecting them with
0. The results of the two experiments are shown in Figures 5
and 6.

From Figures 5 and 6, it can be seen that out of 20
experiments, MEPTM correctly predicted human decisions 19
times, with only one error where the probabilities of 0 and
1 were still within the same order of magnitude. In contrast,
the control group only made 16 correct predictions. MEPTM’s
prediction error rate was 5%, while the control group’s error
rate was 20%, a difference of four times. On one hand, without
machine estimated performance , it becomes difficult to predict
the impact of trust on human actions, which become more
random. On the other hand, MEPTM strengthens the influence
of trust on human decisions through machine performance
estimation scores, resulting in a significant reduction in the
error rate of human decisions. Therefore, solely looking at
the variance values, the difference between MEPTM and the
control group is not significant, with an improvement of only
about 3.6%. However, these prediction deviations can have a
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Fig. 5. The human choice prediction of MEPTM
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Fig. 6. The human choice prediction of control group

significant impact on human decision-making.

In addition to the precision of trust prediction by the
MEPTM model, we conducted a further investigation into the
holistic performance of the decision-aid system subsequent to
the incorporation of machine performance estimation scores.
We analyzed the initial 50 experiments in both the MEPTM
and control groups, employing the accuracy of the decision-aid
system as a criterion for assessing system performance. The
experimental outcomes for the MEPTM and control group are
depicted in Figures 7 and 8, respectively.

As the classification tasks performed by the control and
experimental groups were randomly selected and therefore not
identical, our evaluation criterion was the difference between
the overall performance of the human-machine system and the
performance of the machine alone. In the case of MEPTM, the
overall performance of the human-machine system exceeded
that of the machine alone, whereas in the control group, the
opposite was true. It is evident that MEPTM can significantly
enhance the overall performance of the human-machine sys-
tem. Furthermore, an interesting conclusion can be drawn:
the performance of the decision-aid support system is not
necessarily better than that of the machine alone.
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Fig. 7. The human choice prediction of MEPTM
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Fig. 8. The human choice prediction of control group

Next, we will elucidate why the human-machine perfor-
mance of MEPTM outperforms that of the control group.
Specifically, in the initial 25 experiments of the control group,
we depicted the machine decision curve (with 1 indicating
correct machine decisions and O indicating incorrect ones),
the human execution curve (with 1 denoting execution of
machine decisions by humans and 0 representing rejection
of machine decisions), and the decision curve of the human-
machine system (with 1 denoting correct decisions and 0
denoting incorrect ones), as illustrated in Figure 9.

It can be observed that when the machine’s decision results
change, humans tend to adjust their own decisions accordingly.
For instance, when the machine shifts from making correct
decisions to making incorrect decisions, humans tend to reject
the machine’s decision in the next task. Conversely, when the
machine changes from making incorrect decisions to making
correct decisions, humans tend to execute the machine’s deci-
sion in the next task. However, the issue here is that while the
machine’s decision results change only in the historical sense,
human decisions change in the present moment, leading to a
delayed effect. When the machine’s decision results oscillate
periodically (alternating between correct and incorrect), the
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Fig. 9. The decision curve of control group

trust level of humans in the machine fluctuates between over-
reliance and lack of trust, causing a significant decline in
the overall human-machine performance. The root cause of
this phenomenon is that in the control group, the lack of
machine estimated performance results in minimal historical
accuracy changes, making it difficult for humans to accurately
evaluate the machine’s current true ability. Therefore, humans
rely heavily on the machine’s previous decision results to make
judgments, resulting in cognitive bias. As depicted in Figure
10, the period of low overall human-machine performance
corresponds to the period of machine decision oscillation.

Likewise, we plotted the series of curves for the MEPTM
model, as shown in FigurelO.
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Fig. 10. The decision curve of MEPTM

In the MEPTM model, synchronization between human
and machine decision results eliminates any delay. Hence,
while the machine’s decisions in MEPTM may also exhibit
oscillations, humans can track them in real-time, resulting
in a significant reduction of their cognitive bias due to the
machine’s performance estimation scores. Consequently, the
trust level between humans and machines remains in a well-
matched and appropriate state.

IV. CONCLUSION

In this paper, we present a novel approach to enhance
trust prediction and improve the performance of decision-aid
systems by incorporating the machine’s estimated performance
score into the trust model. Our key contribution lies in refining
the calculation method for the estimated performance score
and seamlessly integrating it into the human-machine system
to form the MEPTM. We leverage trust self-reporting to pa-
rameterize the trust model with data and conduct experiments
to validate the efficacy of the MEPTM while reducing bias in
trust prediction.

REFERENCES

[11 Y. Wang, K. N. Plataniotis, A. Mohammadi, L. Marcenaro, A. Asif,
M. Hou, H. Leung, and M. Gavrilova, “Perspectives on the emerging
field of autonomous systems and its theoretical foundations,” in 2021
IEEE International Conference on Autonomous Systems (ICAS), pp. 1-5,
IEEE, 2021.

[2] T. Joo and D. Shin, “Formalizing human—machine interactions for
adaptive automation in smart manufacturing,” /IEEE Transactions on
Human-Machine Systems, vol. 49, no. 6, pp. 529-539, 2019.

[3] Y. Zhao, Y. Kang, and J. Zhu, Autonomy Theory and Methods of Human-
Machine Hybrid Intelligent Systems. Science Press, 1st ed., 2021.

[4] J. Y. Chen and M. J. Barnes, “Human—agent teaming for multirobot
control: A review of human factors issues,” IEEE Transactions on
Human-Machine Systems, vol. 44, no. 1, pp. 13-29, 2014.

[5] J.D. Lee and K. A. See, “Trust in automation: Designing for appropriate
reliance,” Human factors, vol. 46, no. 1, pp. 50-80, 2004.

[6] M. Hou, “Enabling trust in autonomous human-machine teaming,” in
2021 IEEE International Conference on Autonomous Systems (ICAS),
pp. 1-1, IEEE, 2021.

[71 A. Kolling, P. Walker, N. Chakraborty, K. Sycara, and M. Lewis,
“Human interaction with robot swarms: A survey,” IEEE Transactions
on Human-Machine Systems, vol. 46, no. 1, pp. 9-26, 2015.

[8] L. G. Dizaji and Y. Hu, “Building and measuring trust in human-machine

systems,” in 2021 IEEE International Conference on Autonomous Sys-

tems (ICAS), pp. 1-5, IEEE, 2021.

B. Gebru, L. Zeleke, D. Blankson, M. Nabil, S. Nateghi, A. Homai-

far, and E. Tunstel, “A review on human-machine trust evaluation:

Human-centric and machine-centric perspectives,” IEEE Transactions

on Human-Machine Systems, vol. 52, no. 5, pp. 952-962, 2022.

W.-L. Hu, K. Akash, T. Reid, and N. Jain, “Computational modeling of

the dynamics of human trust during human—-machine interactions,” IEEE

Transactions on Human-Machine Systems, vol. 49, no. 6, pp. 485-497,

2018.

K. Akash, G. McMahon, T. Reid, and N. Jain, “Human trust-based feed-

back control: Dynamically varying automation transparency to optimize

human-machine interactions,” IEEE Control Systems Magazine, vol. 40,

no. 6, pp. 98-116, 2020.

H. Jiang, B. Kim, M. Guan, and M. Gupta, “To trust or not to trust a

classifier,” Advances in neural information processing systems, vol. 31,

2018.

C. M. Jonker and J. Treur, “Formal analysis of models for the dynamics

of trust based on experiences,” in Multi-Agent System Engineering: 9th

European Workshop on Modelling Autonomous Agents in a Multi-Agent

World, MAAMAW’99 Valencia, Spain, June 30-July 2, 1999 Proceedings

9, pp. 221-231, Springer, 1999.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al.,

“Scikit-learn: Machine learning in python,” the Journal of machine

Learning research, vol. 12, pp. 2825-2830, 2011.

A. Xu and G. Dudek, “Optimo: Online probabilistic trust inference

model for asymmetric human-robot collaborations,” in Proceedings of

the Tenth Annual ACM/IEEE International Conference on Human-Robot

Interaction, pp. 221-228, 2015.

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 11,2023 at 01:16:54 UTC from |IEEE Xplore. Restrictions apply.



